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de la Libtration, 33405 Talence Cedex, France 
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Abstract. We use the so-called DSV methodology, that links some enumeration problems 
to the theory of algebraic languages, to get a system of q-difference equations involving 
the generating functions of convex polyominoes, of convex and directed palyominoes, and 
of parallelogram polyominoes, according to their height, width and area. Then, we show 
various applications of this system, 

1. Introduction 
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as special cases of self-avoiding polygons, that are used to model crystal growth or 
polymers. A polyomino is a finite union of elementary cells having its interior connected 
(figure 1). 

We consider here several subclasses of convex polyominoes (figure 2), namely the 
parallelogram polyominoes, the directed and convex polyominoes, and finally the stack 

(Bousquet-MClou 1992), where we also recalled some results concerning the enumer- 
ation of these objects. 

We use the so-called DSV methodology, which relates some enumerative problems 
to the theory of algebraic languages to get a system of q-difference equations involving 
the generating functions of parallelogram polyominoes, directed and convex poly- 
ominoes, and convex polyominoes, according to their height, width and area (Bousquet- 
MClou 1990). 

po!yom.inoes, that havs been &fined_ in  the in@od*&n of the prsvincg paper 

2. Algebraic languages and DSV methodology 

The concept of algebraic language is very classical in theoretical computer science. 
Let X be an alphabet, that is a finite and non-empty set. The elements of X are 

called letters. A word on X is a finite sequence a, . . . a., where at . . . a. are letters of 
X. The empty word is denoted e. The set of words on X is denoted X*. We define a 
product (or concatenation) on X*: if U is the word a, . . . a. and v the word b, . . . b,, 
then the product of U and v is a t . .  . a , b t . .  . b,. This operation is not commutative. 

If a is an element of X, we denote lul. the number of letters a in the word U. 

of rewriting-rules, applied recursively, allow to form all the words of 9, and no other. 
This set of rules is a grammar, and is non-ambiguous when any word of 9 can be 
obtained in a unique way, using the rewriting-rules. 

The most famous-and simple-algebraic language is the Dyck language, denoted 
9. Let X be the alphabet {x, 3). Then a is the set of words U on X satisfying the two 
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Figure 1. A palyomino. Figure 2. A convex polyomino. 

following conditions: (i) \U\, =/uJZ; (ii) if U is factorized as uw, where U and w are 
words of X*, then \uI,>Iuli. 

This language is generated by the grammar composed of the two rewriting rules: 

(8) D - e  (empty word) 

(b) D + xDXD. 

For example, the word xx-xi is produced by the sequence bbabaabaa. At each 

(b) D - xDXD 

state, we apply the chosen rewriting-rule on the leftmost letter ' D  in the word. 

(b) --t X X U X U X D  

(a) + xx2DZD 

(b) + xxZxDXDfD 

(a) + xxXxiDfD 

(a1 --f X m D  

(b) --t xxixi3xDXD 

(a) - x x M M D  

(a) * xx.txExi, 

This grammar I s  non-ambiguous since any non-empty Dyck word has a unique 

For any language 2, we associate its formal generating function g=Xue2 U. 
If 2 is algebraic and generated by a non-ambiguous grammar, then g is a 

component of the unique solution of an algebraic (non-commutative) system. For 
example, we deduce from the rewriting-rules generating the Dyck language that the 
generating function 3 - of Dyck words saiisfies the foiiowing aigebraii: equation: 

factorization xu%w, where U and w are Dyck words. 

9 = e + xg@. _ -  - - 
About fifteen years ago Schutzenberger introduced a new idea that linked algebraic 

languages and some enumeration problems. His idea was at first used to explain the 
algebraic character of some (already known) generating functions (see Con 1970,1972, 
1975). and then to obtain new results. The first one was the following: the number of 
convex polyominoes having perimeter 2n f 8  is (2n + 11)4" -4(2n + 1)(2.") (Delest and 
Viennot 1984). 

The DSV method consists in building a bijection between the objects one wishes to 
enumerate and words of an algebraic language 2, so that the size of an object is the 
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length (the number of letters) of the associated word. If 2’ is generated by  a non- 
ambiguous grammar, we can derive from the algebraic system on 2 another algebraic 
system, which is commutative and involves the generating funzon  of the objects. 
More details and examples can be found in the works of Delest and Viennot (1984) 
and Viennot (1985). 

Several refinements of this methodology were found to get multivariate (but still 
algebraic) generating functions. Recently, Delest and Fedou (1989) introduced a 
‘q-analogue’ of this methodology, that allows them to obtain even non-algebraic series. 
They used it successfully to enumerate parallelogram polyominoes according to their 
width and area (Fedou 1989). 

We generalize their work by using another coding that Delest (1988) constructed 
at first to enumerate column-convex polyominoes. We finally get a system of q-difference 
equations involving the generating functions of parallelogram polyominoes, directed 
znd convex po!ynminncs, znd cnnver po!ynminaes. 

Notation, The generating function of a given subset Y of polyominoes will be 
“ m a  P(X, Y ,  4) = 1 x Y 9 P”.,,.? 

n.m.0 

where P.,,,,,. is the number of polyominoes of 9 having width n, height m and area a. 

3. q-differeuce equations 

A polyomino is column-convex if its intersection with any vertical line is connected. 
We describe at first Delest’s coding for column-convex polyominoes. 

Figure 3. T h e  a, and 0, numbers. 

Let P be a column-convex polyomino having m columns, denoted, from left to 
right, C , ,  . . . , C,,,. For 1 6  is m - 1, let ai (respectively pi) be the difference between 
the bottom (the top) of C,,, and the bottom (top) of C,.  Let a. = 0, pm = 0,  a, = h, - 1 
and Po= h,- 1, where h ,  (h , )  is the height of C ,  ( C , ) .  Note that ai and pi can either 
be positive or not (figure 3). 

Let g ( P )  be the word uox.i%,x3.. . xXU,, with, for O S  i S m :  

if ai r 0 a n d p ; r O  
if ai SO andp ,  S O  
if a;SO andp ,  P O  
if ai S 0 and pi S 0. 
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Let Y be the set of all words g ( P ) ,  when P describes the set of column-convex 
polyominoes. Then g is a bijection between column-convex polyominoes and words 
of Y (Delest 1988). 

Let U be a word of Y. If U = va6w, where a and b are elements of (x, y ) ,  the factor 
ab is call a peak of U ,  and the height of this peak is l + ( ~ ( , + ( u ( . , - ( u ( ~ - ( u ( , .  The 
perimeter, width and area of a column-convex polyomino P can be read on g ( P )  as 
follows: 

the perimeter of P is the length (number of letters) of g ( P ) ,  plus two, 
the width of P is the number of peaks of g ( P ) ,  
the area of P is the sum of the heights of the peaks of g ( P ) .  

Convex polyominoes are obviously special cases of column-convex polyominoes. 
So we can apply our coding g to each studied subset of convex polyominoes, and try 
to tind out whether its image is a n  algebraic language generated by a non-ambiguous 
grammar, In this c ~ s e ,  we wi!! get I system ofeqoations invo!ving the generating series. 
of this subset. 

We tirst notice that the image under g of the set of parallelogram polyominoes is 
the set of non-empty Dyck words. The image under g of the set of directed and convex 
polyominoes is also an algebraic language generated by a non-ambiguous grammar. 
The case of convex polyominoes is more difficult: actually, we do not know whether 
its image under g is an algebraic language or not. Nevertheless, we can define two 
subsets of convex polyominoes, denoted d and 9, so that: 

to enumerate d and 9 is enough to enumerate convex polyominoes, 
the images under g of d and 93 are both generated by an algebraicnon-ambiguous 

grammar. 
Let P be a convex polyomino and R be the smallest rectangle containing I? Let 

[N, N'] (respectively [W, W'], IS, S ' ] ,  [E, E']) be the intersection of P with the upper 
(respectively left, lower, right) border of R, the points N, N', W, W', S, s', E, E' being 
taken counterclockwise (figure 4). 

N'  N 

As in the previous paper (Bousquet-Milou 1992), we detine three subsets of convex 
polyominoes. Let d be the set of convex polyominoes such that the vertical line passing 
by N is at the right of the vertical line by S. Let d' be the set of convex polyominoes 
such that the vertical line passing by S' is at the right of the vertical line passing by 
N'  (figure 5 ) .  Let 93 be the intersection of d and d'. 

Note that the symmetric, up to any vertical axis, of a polyomino of d is a poly- 
omino of d' (and vice-versa), and that the union of .d and d' is the set of convex 
polyominoes. 

These remarks imply that the generating function Z ( x ,  y ,  q )  of convex polyominoes 
is 

Z = 2 A - B  (1) 
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Figure 5. Elements of (left to right) d, d' and 96. 
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where A ( x ,  y,  9 )  (respectively B ( x ,  y,  9 ) )  is the generating function of the convex 
polyominoes of SP (92). 

Let 9 (respectively 8, 9, %?) be the image under g of the set of parallelogram 
polyominoes (respectively directed and convex polyominoes, polyominoes of SP, poly- 
ominoes of Se). Note that we changed the previous notations, since 9 is now the set 
of non-empty Dyck words. 

The images under g of the sets d and B are algebraic languages generated by 
non-ambiguous grammars. We introduce nine other languages, namely 8,. 8', XL, 9,. 
S2, F3, %?,, S2, and S3, to determine the rewriting-rules of the grammars generating 
9. 8. 9 and S. We deduce from these rewritinn-rules that the following system has a . ,  - - .  
unique solution, denoted (2; %3 %7 z7 s9 3; 3) and that 
- 9 (respectively E, - - -  E, g) is the formalgenerating function of 9 (respectively 8,9, 3): 

3% Zi 3; Bi - - _  _ - _ _ _ -  _ _ _  
- 
9 = H + d g + x g f + x g @  -- 

8 = x i  + X a ,  + x g a  + x g f g  

8'=H+ 8;xf+x8- , f+Bx8- , f  

9 = x.f+d.%, + x g f ( e  +E) + x ( g - g ) f { d } *  + x . % ~ ~ { x % ] +  - 

- -  - - 
% , = g + y % , i + y 8  1- 29 - _ -  - _ -  - _ _  - _ -  - - 

% ; = ' + x % ; j + g x X ; j  - -- - - -  - - - _ _  - - - - 
- = -  - - _  - - 

9, ="+y%,f(e +E) - + y ( 9 ,  _ _  - 8 , ) f ( ~ } *  + y p 3 j ( x f } +  - - 

~ ~ ~ %?, = s+y%?,n{xx}* ~ ~ + y % ? 3 j { e ] +  = %? = H+ xs?,  +X%?f{XXJ* + x % ? 2 j ( x f ] +  - 

% ? 2 = = + { ~ } * X ~ j + ( H } + y ~ j  _ _  g3 = ~ 2 + y % ? l a ( d } * + y q j { a } * .  - - 

(2) _ _  = -  
T2 =E+ ( e + g ) x % L j +  - { e } * x ( g 2  - 8;) j  + { x . f } + ~ @ ~ j  - 
F3 = % + y p ( e + s )  + y ( 9 ,  _ _  - 8 , ) f { d l * + y 9 3 j ( X % } *  - - 

- _ _  _ _  - - = -  

_ _  - _ _  
_ -  _ - - ~~ - -  - - 

_ _  - = -  _ - 
(The notation { x f } +  (respectively ( H I * )  stands for Xna, ( e ) "  (respectively 

We can now translate these equations into a commutative system involving the 
generating functions of the words of these languages according to their length, number 
of peaks, and sum of the heights of their peaks. For example, let 

~ " > O ( ~ ) " ) ) .  

D(r2, x, 4) = r2"xpq'D.,p,. 
".P.' 

where Dn,p.s is the number of Dyck words of length Zn, having p peaks, such that the 
sum of the heights of these peaks is s. Then the first equation of system (2) leads to: 

D ( r 2 , x ,  q )  = t2xq+ r2xqD(r2 ,  x, 9 ) +  r2D(r2, xq, 9 )+  r2D(r*, x9, 9 ) D ( r 2 ,  x, 9) .  (3) 
Then, thanks to the properties of the bijection g, the generating function of 

parallelogram polyominoes is X ( x ,  y ,  q )  = y D ( y ,  x / y ,  4). We thus have 

X ( X ,  y ,  9 )  = XY9+XSX(X, Y ,  9 ) + ( Y  + X ( x ,  Y ,  q ) ) X ( x 9 ,  Y ,  9 )  
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which will be written 

X ( x )  =a+- y + x x ( x q ) .  
I - x q  1 - x q  ( 4 )  

Using similar transformations on every equation of system ( 2 ) ,  and also relation 
( l ) ,  we finally get the following matrical system. It has a unique solution where all 
the components are formal series in the three variables x, y and q, denoted 

parallelogram (respectively directed and convex, convex) polyominoes: 
(X, Y, Y l ,  Z, Z , ,  Z3). T!x~; X (ic~pe~:ivi!y I', Z) is the geiieiaiing function of 

Y + X  
1-xq 1-xq 

X ( x ) = -  xyq +-X(xq) 

with 

XYq and w =  Y,-- 
1-xq 1-xq'  

v =  y - -  XYq 

The generating function B(x ,  y ,  q )  of polyominoes of 93 is given by 

4. Applications 

4.1. Solution of the system 

There exists no method to solve systematically these types of equations, called q- 
difference equations. Nevertheless, iterative methods give interesting developments for 
the series Y and 2 that enumerate respectively directed and convex polyominoes and 
convex polyominoes. We showed that each term of these developments is the generating 
function of a particular class of polyominoes. But we have to use other results ahout 
stack polyominoes and parallelogram polyominoes, proved by a different method 
(Bouquet-Mklou 1991, 1992), to completely solve this sytem. We get the following 
results. 

Notation. We use the standard following notation: if n 2 0, 

(a).  = ( 1  - a ) ( l  - aq)  . . . (1  - aq"-') .  
".. :.- I . \  1 :r ~ . - n  DY wnvcniiun, ( U ) .  = I I I  n - W .  

Then, the generating function of directed and convex polyominoes is: 

R ( x )  - k ( x )  
Y = y  

N ( x )  
(7) 
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and 
)"9'"' 

fm+l).-m-l 

The generating function of convex polyminoes is 

where 

N ( x )  is the series defined by (8) and T, is the polynomial defined by the following 
recurrence relations: 

To= 1 T, = 1 

Tn =2T._, + ( x 9 " - ' -  l)Tn-z if n 3 2. 

Note that we obtain the same expression for the generating function Y as in 
Bousquet-M.4ou (1992), but a different formula for the Z series. 

4.2. Heighf and widfh generating functions 

In the particular case q = 1, the system ( 5 )  becomes easy to solve. We thus get the 
width and height generating series of all studied subsets of convex polyominoes. As 
noted in the introduction of the previous paper, they are algebraic series. We find: 

X Y  Z ( x ,  y, 1 )  = 7 ( 1  - 3x - 3y + 3x'+ 3y2+ 5xy - x3  - y' - x'y - xy2 - xy ( x  - y)2) - - A- A3/2 
(16) 

( 1 - x ) (  1 - x - 2y +y2 - x y )  
( 1 - x - y ) A  B(x,  Y. 1 )  = X Y  (17) 

with 

A = 1 - 2 ~ - 2 y  -2xy +x2+y2.  (18) 
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The first result is standard. The next two have already be proved by Lin and Chang 

Note that these series become perimeter generating functions when x = y. 
Using Lagrange inversion formula and numerous developments in partial fractions, 

we finally expand these generating functions, in order to get explicit formulae for the 
number of polyominoes of each class having given height and width, or a given 
perimeter. We thus prove that the number of parallelogram polyominoes having width 
p and height q is 

(1988). The fourth one is new. 

1 ( P  +; - I ) (  P +," - 1 )  
P f q - 1  

The number of directed and convex polyominoes having width p and height q is 

/ p +  q -2\ / p +  q -2\ 
\ p - 1  q-1  ). 

The number of convex polyominoes having width p and height q is 

(21) 
P - 1  q - 1  

This result has already been proved by Gessel (1990), in a different way. The number 
of polyominoes of 3 having width p and height q is 

Expanding perimeter generating functions proves that the number of parallelogram 
polyominoes having perimeter 2n + 2 is 

q). n + l  

The number of directed and convex polyominoes having perimeter 2 n + 4  is 

The number of convex polyominoes having perimeter 2n + 8 is 

(3 ( 2 n +  11)4" - 4 ( 2 n + l )  

The number of polyominoes of $3 having perimeter 2n + 8  is 

6.4" -+ 2". (26) 

4.3. Area-weighted moments of convex polyominoes 

A last application of system ( 5 )  is the recursive computation of area-weighted moments 
of convex (or parallelogram, or directed and convex) polyominoes. These moments 
are (near to a multiplicative constant) the partial derivatives of Z ( x ,  y, q )  with respect 
to q, evaluated at the point q = 1. They appear as correction terms when using the 
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finite-lattice method to expand the partition function of the q-state Potts model (Enting 
and Guttmann 1989). 

Let 

For any formal series (or vector) S(x, y ,  q), we denote 

and simply S for S(X,Y,  1) .  Differentiating each equation of (5) n times with respect 
to q leads to the following system, which allows us to evaluate %'." by induction. Let 
B A  denote the characteristic function of the set A. I ,  be the identiy matrix of size n: 

(1  - x - y - 2X)XOJ 

[( 1 - x ) I z  - ( y  +X)N]%O." 

with 
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and finally 

We thus obtain 

J Z  

Jq 

xyP(x, y )  + 4x*y'(l+ x - y ) (  1 - x + y )  
- (x ,y,1)= A4 AV2 

with 

P(x, y )  = 1 - 6 ~ - 6 y +  15x2+ 15y2+20~y-20x3 -20y3 - 1 8 ~ ' ~  - 18xy2+ 15x4+ 15y4 

- 8 ~ ~ y - 8 ~ y ~ + 2 8 ~ ' y ~ - 6 ~ ~ - 6 y ~ + 2 2 ~ ~ y + 2 2 ~ y ~ - 4 0 ~ ~ y ~ - 4 0 ~ ~ y ~ + x ~  

+ ~ ~ - - 1 2 ~ ~ ~ -  12xys-5x4y2-5x2y4+64x3y3 

+ ~ X Y ( X  -Y)*(X + y  j(x*+ ioxy +yi) +~x'JJ'(.x -vY. 
The calculus of P',' is too involved for the computer we use, but, in the special case 
x = y =  f, we find 

a'z t3(2+5t -224t2+ 1306t3 -3352t4+4536tS -3424f6+ 1664t7-512t8) 
7 (t, t, 1) = 2 
d q  (1  - 4 t y  

f'( 29 - 172 t + 356 ti - 3 12 t' + 120t4) 
-2  

(1 - 4 t p 2  

These results prove two conjectures of Enting and Guttmann (1989), related to the 
tint two area-weighted moments of convex polyominoes, and subsequently obtained 
by Lin (1990). 
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